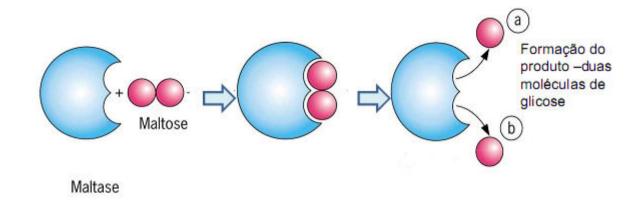
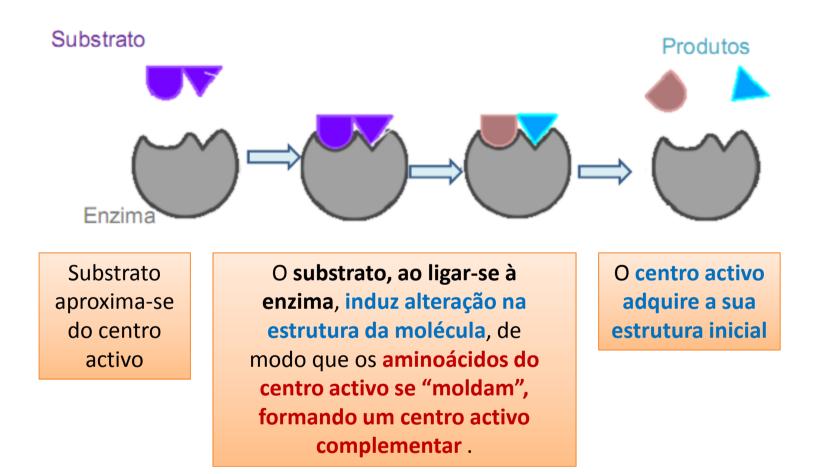
PRODUÇÃO DE ALIMENTOS E SUSTENTABILIDADE


|DOCUMENTO DE APOIO AO ESTUDO| |BIOLOGIA 12.º|

- Avisos
- 1. Este documento apenas serve como apoio parcial às aulas de Biologia 12.º ano − Unidade 4 leccionadas na Escola Secundária Morgado Mateus (Vila Real) pelo docente Ricardo Montes;
- 2. Os elementos constantes neste documento não substituem os constantes no manual adoptado nem deverão ser utilizados como meio primordial de estudo.


MODELOS DE LIGAÇÃO ENZIMA-SUBSTRATO

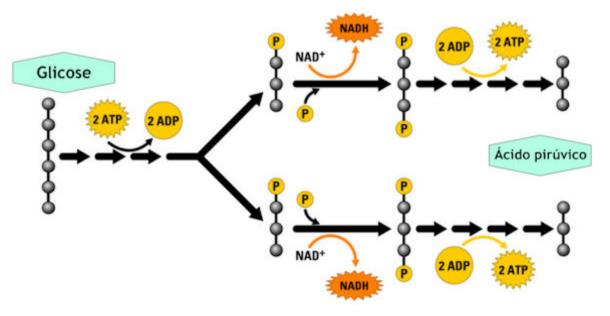
Modelo de Fischer ou de chave-fechadura

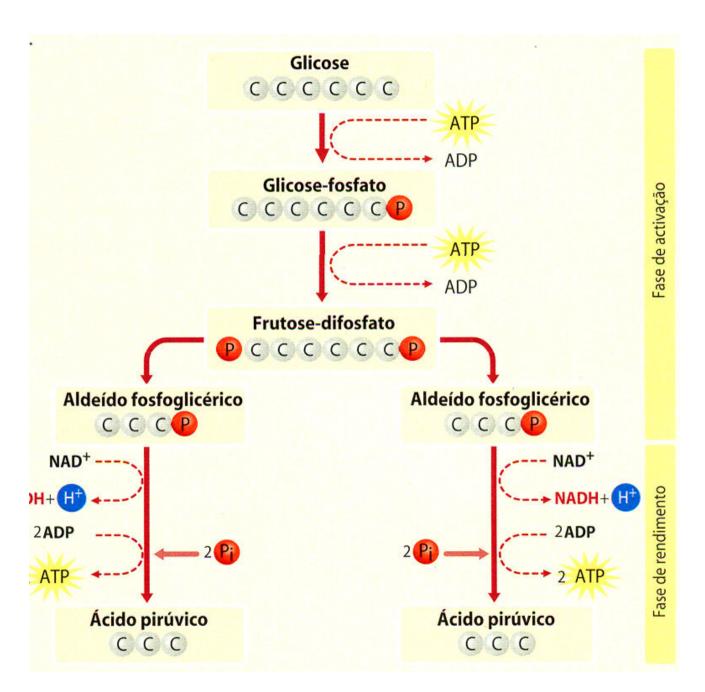
- Proposto por Fisher (1890), considera o centro activo da enzima uma estrutura permanente, rígida e pré-complementar do substrato.
- O substrato ajusta-se ao centro activo da enzima como uma chave se ajusta a uma fechadura.
- Este modelo está em sintonia com a especificidade absoluta.

Modelo de Koshland ou do encaixe induzido

- Este **modelo** explica a actividade de certas enzimas sobre <u>substratos ligeiramente diferentes</u> – **especificidade relativa**.

FERMENTAÇÕES

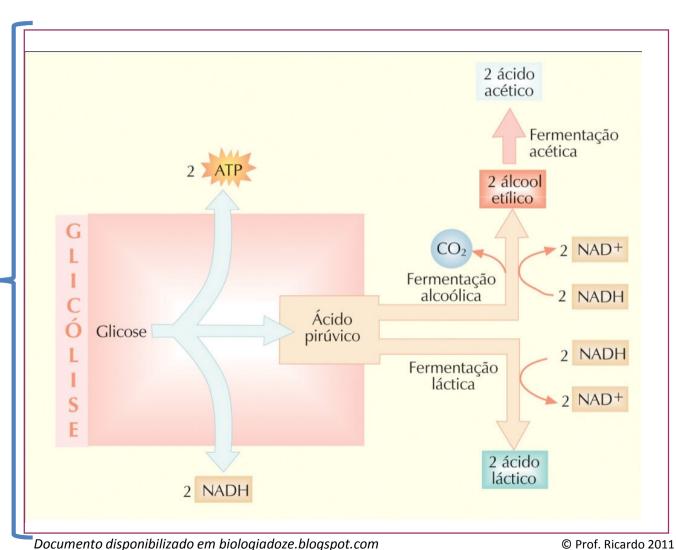

FERMENTAÇÃO — **processo anaeróbio** em que **ocorre a produção de ATP**, a partir de **compostos orgânicos**, numa série de **reacções oxidação e redução**, **catalisadas por enzimas**.


Nota: A fermentação envolve pequenos ganhos energéticos já que apenas se formam 2 moléculas de ATP por molécula de glicose, enquanto que na respiração aeróbia se formam 36 ATP.

Etapas da fermentação

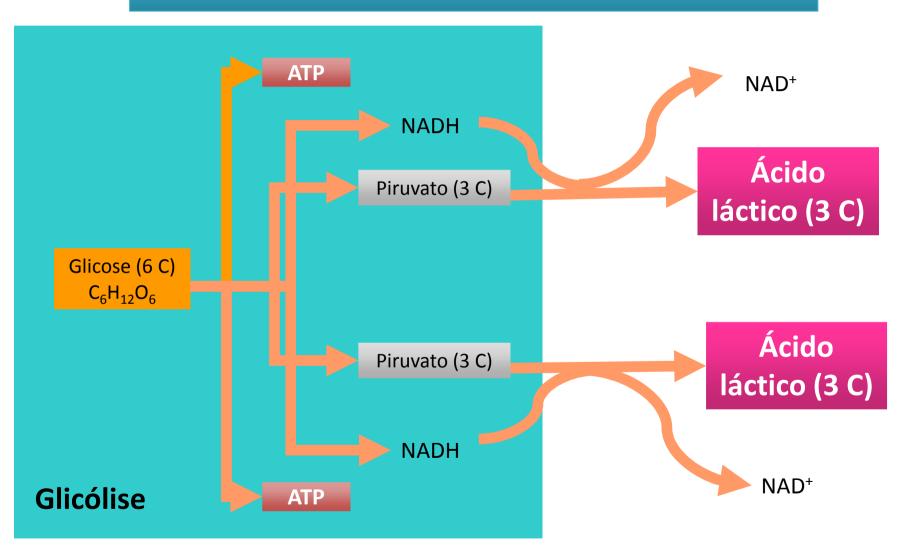
Etapa 1: GLICÓLISE

- A glicose é oxidada e formam-se duas moléculas de ácido pirúvico (ou piruvato).
- O agente oxidante é o NAD+ que é transformado em NADH.
- O saldo energético é de duas moléculas de ATP.

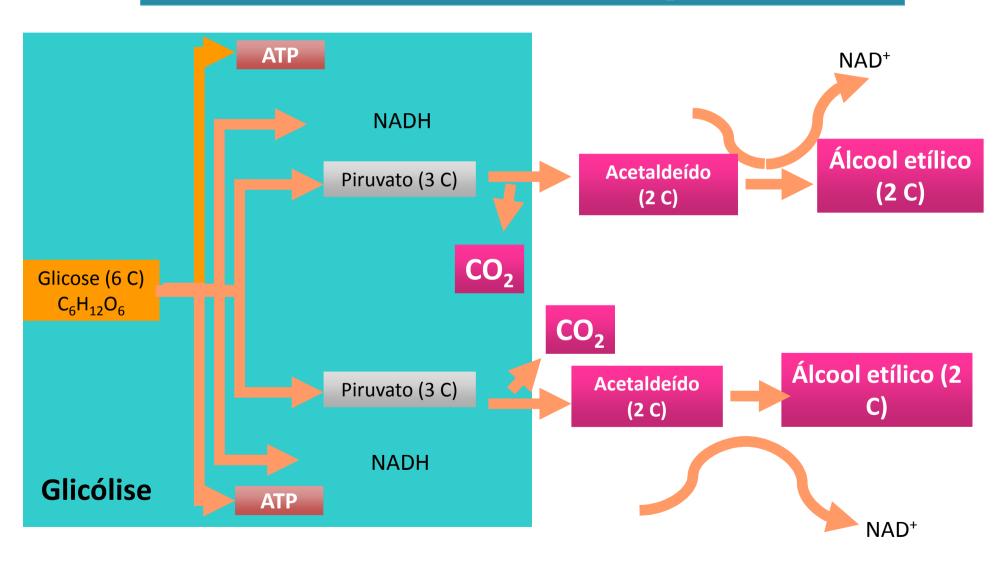


Etapa 2: REDUÇÃO DO ÁCIDO PIRÚVICO

- O ácido pirúvico, ou moléculas orgânicas que se formam a partir dele, são aceptoras dos electrões do NADH, o que permite regenerar o NAD+.


Nota: O NAD⁺ pode, assim, voltar a ser utilizado na oxidação da glicose com formação de 2 ATP.

Os produtos finais da fermentação dependem da molécula orgânica que é produzida a partir do ácido pirúvico.

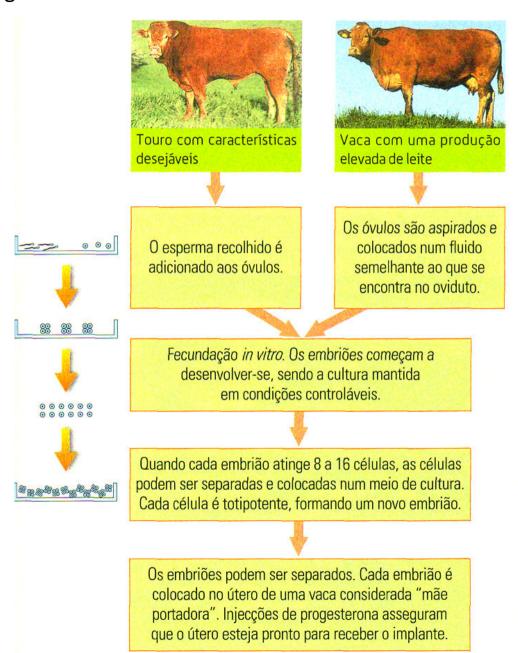

Fermentação láctica

Glicose → Ácido láctico + 2 ATP

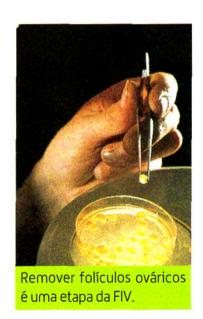
Fermentação alcoólica

Glicose \rightarrow Álcool etílico + 2 CO₂ + 2 ATP

Fermentação acética


TIPO DE ALIMENTOS	CARACTERÍSTICAS	EXEMPLOS
Alimentos não perecíveis ou estáveis	Não sofrem deterioração, por longos períodos de tempo, se forem manuseados e armazenados correctamente.	Açúcar, farinha e feijão seco.
Alimentos pouco perecíveis	Conservam-se em boas condições, durante um período longo de tempo, se correctamente manuseados e armazenados.	
Alimentos perecíveis	Degradam-se rapidamente se não forem sujeitos a métodos de conservação.	Carne, peixe, aves, ovos, leite e a maior parte dos frutos e vegetais.

- Os aditivos são referidos nos rótulos dos alimentos por um código composto pela letra E seguida de um número com três algarismos.


FUNÇÃO DOS ADITIVOS	TIPOS DE ADITIVOS	
Aditivos com acção conservante A sua principal função é aumentar o tempo de duração do alimento.	Conservantes (E 200 a E 299) - prolongam a duração dos alimentos, por inibição ou redução da actividade dos microrganismos ou das reacções de autóiise do próprio alimento. Antioxidantes (E 300 a E 399) - retardam a oxidação. Previnem a formação de ranço nos alimentos que contêm lípidos e o escurecimento da fruta.	
Aditivos com função sensorial Modificam ou realçam as características organolépticas do alimento.	Corantes (E 100 a E 199) - dão cor ao alimento. Intensificadores de sabor (E 600 a E 699) - realçam o sabor do alimento. Espessantes (E 400 a E 499) - melhoram a consistência de alguns alimentos. Aromatizantes - conferem aroma ao alimento.	
Aditivos que facilitam certas operações industriais de processamento e fabrico	<u>Estabilizadores e emulsionantes</u> (E 400 a E 499) - permitem a manutenção do estado físico dos alimentos e facilitam a mistura de ingredientes.	

- Aplicados a refrigerantes, bolos, gelados, charcutaria, molhos e aperitivos.

- A clonagem de animais, como ovelhas ou coelhos, pode ser conseguida através de fecundação in vitro seguida da divisão e transferência de embriões.

Tratamento com a hormona foliculoestimulina que provoca uma ovulação múltipla.

Recurso à Eng. Genética para aumentar a resistência das plantas às pragas

VANTAGENS

Protecção das culturas:

- -Tolerância aos herbicidas
- -Resistência ao insectos, vírus, bactérias
- -Resistência a condições climáticas extremas.

•Melhoramento das condições de criação de gado:

– Melhoramento da nutrição animal

Alimentação humana:

 Melhoramento das características nutritivas e melhoramento da conservação gosto, sabor e consistência dos alimentos

DESVANTAGENS

•Disseminação dos genes de tolerância aos herbicidas:

-Através do pólen genes introduzidos podem ser disseminados às espécies selvagens, por exemplo através do pólen.

Aparecimento de insectos resistentes aos pesticidas

Possível impacte sobre insectos úteis

•Riscos alimentares:

-Toxicidade, alergias, transferência de genes resistentes aos antibióticos para os microrganismos do tubo digestivo

Redução da biodiversidade

Controle biológico de pragas

VANTAGENS	DESVANTAGENS	
•Não provoca toxicidades;	•Investigação demorada;	
•Minimiza a resistência genética;	•Acção lenta e de difícil a aplicação relativamente aos pesticidas;	
•É específica;	•Em certos casos funcionam como	
 Perpetua a sua acção desde que a população de predadores / parasitas esteja estabelecida. 	praga.	